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AI: how (why) does it work?

I AI and math, AI and the hard sciences, fantasy or reality?

I National poll: there are about 400 mathematicians, mostly already active in the
field and some ready to step in.

I Mainly (but not only) in machine learning.

I The country (UMI, INDAM, the academic system) has the duty to support them.

I First step: awareness.
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Perceptron algorithm, Rosenblatt 1958



Bits of history

I Didn’t work well, logical and practical objections (but Hinton persisted!)

I Improvements: shallow networks, deep networks

I Large databases, GPU, improved transmission and inversions algorithms,
convolutional methods etc.



Efficacy and perspectives

I Nowadays works well in image recognition, language analysis, consumer profiling,
and game playing (chess, go, etc).

I Why? Are there principles and laws? Theory and models? Can we make
predictions on if it’s going to work on different environments? How about
efficiency?

I Deep Learning: technology, almost entirely heuristic, like pre-thermodynamic
heat-engines.



Open problem (personal) collection

I Why is it convenient to grow in depth instead of wideness?

I Why deep networks do not overfit?

I Can we estimate the optimal number of parameters?

I What are the optimal form factors?

I Why good quality minima are easily found? Large entropy.



Open problem (personal) collection

Three classes of intertwined problems:

I Data structure: statistics, signal analysis

I Modelisation: physics, mathematics, math-phys

I Algorithms: computer science (beyond worse case), optimization



Boltzmann Machines

Math: what is the probabilistic model whose inferential solution is reached
with machine learning? Boltzmann Machine!

I Precursors: Sherrington Kirkpatrick 1975, Parisi solution 1979, Hopfield Model
1982

I 1983, Hinton, Sejnowski

I 2009, Hinton, Salakhutdinov

Deep Learning: inverse problem, inference problem, with sampling assigned
only in the boundary.

Paramount research: properties of the direct problem under simplifying
hypoteses.



Mathematical setting

Let VN = {1, . . . ,N} be a set of labels for the N particles (or elementary agents,
neurons) of a system.

I Spin: to each i ∈ V we attach a binary variable σi ∈ {−1, 1} representing the
degree of freedom of a single particle.

I Configuration space: ΣN = {−1, 1}N . A point σ = (σi )i∈V ∈ ΣN represents a
(microscopic) configuration of the system.

I Hamiltonian or energy is a (random) function HN : ΣN → R

HN(σ) = −
∑
r ,s∈S

∑
i∈Vr ,
j∈Vs

W
(rs)
ij σiσj −

∑
r∈S

∑
i∈Vr

b
(r)
i σi (1)



Mathematical Setting

Study the properties of

I Gibbs measure: is a (random) measure on the configuration space ΣN defined as

GN(σ) =
1

ZN
e−βHN(σ) (2)

where ZN =
∑

σ∈ΣN
e−βHN(σ) is the normalization or partition function.

I how does GN behaves when N →∞ (thermodynamic limit)?

I compute the moments generating function in the thermodynamic limit

pN =
1

N
logZN (3)



Multi-species disordered models

I Simplifying assumption: particles can be divided in different species (like in deep
learning): let S be a finite set of labels with |S| = K , we assume the vertex set
VN can be written as a disjoint union VN =

⋃
s∈S Vs

I Relative densities: we assume that |Vs |
N → αs ∈ (0, 1) for N →∞, for each s ∈ S

I for r , s ∈ S
W

(rs)
ij

iid∼ N (
µrs
2N

,
∆rs

2N
) , (4)

b
(s)
i

iid∼ N (µ̃s , ∆̃s) (5)

I invariance under the direct product of the symmetric groups of each specie

I Key result: self averaging Gaussian concentration implies that

lim
N→∞

(pN − EpN) = 0, W , b − a.s. (6)



The convex multi-species model

Consider a finite set (of species) S and the Hamiltonian (1) assuming that:

I µ = 0, centered interactions

I ∆ is a semi-positive definite matrix

I µ̃ and ∆̃ are arbitrary

The property ∆ ≥ 0 allows to extend the Parisi formula to the multi-species case,
namely to express the quenched pressure for N →∞ as a (infinite dimensional)
variational problem.



The core of the problem is the control interacting part of the Hamiltonian

H int
N (σ) = −

∑
r ,s∈S

∑
i∈Vr ,
j∈Vs

J
(rs)
ij σiσj (7)

This is a centered Gaussian process with covariance

EH int
N (σ1)H int

N (σ2) = N
∑
r ,s∈S

∆rs αr αs q
(r)
12 q

(s)
12 (8)

where, for each s ∈ S, we define the relative overlap

q
(s)
12 =

1

|Vs |
∑
i∈Vs

σ1
i σ

2
i (9)



Theorem ( Barra-Contucci-Mingione-Tantari ’13, Panchenko ’13 )

If the matrix ∆ is positive semi-definite

lim
N→∞

pN = lim
N→∞

EpN = inf
x
P(x), J − a.s.

where P(x) is K -dimensional functional (generalization of Parisi functional for SK) and
x is a cumulative distribution function on [0, 1]K with suitable properties .

Ideas of the proof: The assumption ∆ ≥ 0 allows to obtain an upper bound for EpN
dominating the interaction term by a suitable one body system (replica symmetry
breaking interpolation). The converse bound is obtained exploiting the synchronization
property of the overlap vector.



Deep Boltzmann machine (DBM)

In the Hamiltonian (1) with K species and centred interactions, consider the species
arranged along a linear chain. Only pairs of consecutive species interact, while
intra-species interactions as well as long range ones are forbidden. This amounts to the
following assumptions on the parameters:

I ∆ is a non-definite matrix, with zero diagonal and a tridiagonal structure

∆ =


0 ∆12 0 · · · 0

∆12 0 ∆23 · · · 0

0 ∆23 0
. . . 0

...
...

. . .
. . . ∆K−1,K

0 0 0 ∆K−1,K 0

 ;

I µ = 0, for centered interactions;

I µ̃ = ∆̃ = 0, in absence of external field.



Theorem (Alberici, Barra, Contucci, Mingione ’20)

lim inf
N→∞

E pN ≥ sup
a
P(θ(a)) ,

where:

P(θ1, . . . , θK ) =
K∑
r=1

(
pSK(θr )− pAnn-SK(θr )

)
+ pAnn. .

pSK(θr ) denotes the limiting quenched pressure of a standard SK model at inverse
temperature θr , while pAnn-SK denotes its annealed version and pAnn. the annealed
pressure of the deep Boltzmann machine. Moreover

θr (a) =
√
αr

√
1

ar−1
∆r−1,r + ar ∆r ,r+1

and the supremum is taken over a = (a1, . . . , aK−1) ∈ (0,∞)K−1 .



The annealed pressure is defined as

pAnn. = lim
N→∞

1

N
logEZN

and is easy to compute thanks to the Gaussian nature of the interactions. Our lower
bound provides the following result on the annealed regime of the deep Boltzmann
machine:

Theorem (Alberici, Barra, Contucci, Mingione - Alberici, Contucci, Mingione ’20)

If the tridiagonal matrix M = ∆ · diag(α1, . . . , αK ) has spectral radius ≤ 1 , then there
exists

lim
N→∞

E pN = pAnn. ,

namely the deep Boltzmann machine is in the annealed regime.

This result relies on the beautiful algebraic properties of certain Heilmann-Lieb
polynomials, which establish a connection between deep Boltzmann machines and
monomer-dimer systems.



Minimizing the size of the annealed region for given interaction strengths, one finds the
following optimal shapes for the DBM:

Theorem (Alberici, Barra, Contucci, Mingione - Alberici, Contucci, Mingione ’20)

The maximum of the spectral radius of M over α1, . . . , αK ≥ 0 ,
∑

r αr = 1 , equals
maxr ∆r ,r+1 and is reached if and only if:

αr∗ = αr∗+1 =
1

2
for r∗ ∈ arg max

r
∆r ,r+1 , or:

αr∗−1 + αr∗+1 = αr∗ =
1

2
for r∗, r∗−1 ∈ arg max

r
∆r ,r+1 .



M-SK model on the Nishimori line

Nishimori line: a subregion of the space of parameters µrs ,∆rs , µ̃s , ∆̃s where
µrs = β∆rs and µ̃s = β∆̃s . Reabsorbing β it is equivalent to have

J
(rs)
ij

iid∼ N
(µrs

2N
,
µrs
2N

)
, h

(s)
i

iid∼ N (µ̃s , µ̃s).

Identities and correlation inequalities: models in this setting enjoy useful identities
(〈·〉N denoting Boltzmann-Gibbs average) and inequalities (Contucci, Morita, Nishimori
’04,’05):

E[〈σi 〉2N ] = E[〈σi 〉N ] , E[〈σiσj〉2N ] = E[〈σiσj〉N ] ,

∂EpN
∂µrs

,
∂EpN
∂µ̃s

,
∂2EpN
∂µ2

rs

,
∂2EpN
∂µ̃2

s

≥ 0

Replica symmetry: The previous ones imply replica symmetry in the models
presented here. The variational principle is indeed finite dimensional.





The convex case on the Nishimori line

The thermodynamic limit is computed by means of the adaptive interpolation method
(Barbier, Macris ’19).

Theorem (Alberici, Camilli, Contucci, Mingione ’20)

If µ is positive semidefinite, the thermodynamic limit of the random pressure converges
J-a.s. and:

lim
N→∞

pN = lim
N→∞

EpN = sup
x∈[0,1]K

p̄(µ, µ̃; x)

where p̄(µ, h; x) is a function of K parameters x .

When µ̃s = 0 the transition of x towards positive values is controlled by the spectral
radius of M := (µrsαs)r ,s=1,...,K .

I ρ(M) < 1: p̄ is concave, x = 0 is the unique maximizer;

I ρ(M) > 1: x = 0 becomes an unstable saddle point.



The deep Boltzmann machine on the Nishimori line

The DBM on the Nishimori line corresponds to the choice:

µ =


0 µ12 0 · · · 0
µ21 0 µ23 · · · 0

0 µ32 0
. . . 0

...
...

. . .
. . . µK−1,K

0 0 0 µK ,K−1 0

 ,

namely, species are arranged in a consecutive way and only adjacent species are
allowed to interact. Intra-group interactions are forbidden (0 diagonal elements).

µ has eigenvalues with alternating sign (symmetric w.r.t. 0). This clearly violates the
positivity hypothesis of the convex case.





The thermodynamic limit of the DBM

Theorem (Alberici, Camilli, Contucci, Mingione ’20)

The random pressure of the deep Boltzmann machine on the Nishimori line converges
J-a.s. and

lim
N→∞

pN = lim
N→∞

EpN = sup
xo

inf
xe

pvar (µ, µ̃; x) ,

where xo and xe denote the vectors of the odd and even components of x ∈ [0, 1)K

respectively.

When µ̃s = 0 the transition of x towards positive values is controlled by the submatrix
(recall Mrs = µrsαs) [M2](oo) := ((M2)rs)r ,s odd ≤K :

I ρ([M2](oo)) < 1: x = 0 is the unique optimizer;

I ρ([M2](oo)) > 1: the optimizer x = x̄ has striclty positve components.
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